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Abstract. Recently, a set of tools has been developed with the purpose of studying quantum
gravity. Until now, there have been very few attempts to put these tools into a rigorous mathematical
framework. This is the case, for example, for the so-cafiath bundleof a manifold. It is

well known that this topological principal bundle plays the role of a universal bundle for the
reconstruction of principal bundles and their connections. The path bundle is canonically endowed
with parallel transport and, associated with it, important types of derivatives have been considered
by several authors: the Mandelstam derivative, the connection derivative and the loop derivative.
Here we shall give a unified viewpoint for all of these derivatives by developing a differentiable
calculus on differentiable spaces. In particular, we shall show that the loop derivative is the curvature
of a canonically defined 1-form that we shall call th@versal connection 1-form

PACS number: 0420

1. Introduction

The use of paths for the study of geometric properties of manifolds have been shown to be a
powerful and rich tool. This seems to be due to the fact that paths naturally carry information
between their two extreme points. One example of such a transit of information is given by
parallel transport, and its use introduces a sort of nonlinear duality between loops (a particular
equivalence class of piecewise paths) and connections. This duality is the root for the loop
representation of Yang—Mills quantum theories. It began in the work of Mandelstam [10, 11]
and was followed by many others. Since the discovery by Ashtekar of a new set of variables,
making gravity closer to a gauge Yang—Mills theory than geometrodynamics, much of the
attention on canonical quantization for gravity has turned to trying to find a loop representation
of it. In particular, it has led to solving2 + 1)-dimensional gravity exactly [2]. After the
importance of loops in gauge theory was really understood many people tried to realize a
rigorous theory for it and their calculus. There are several efforts in this respect that cover
different topics of the problem of the reconstruction of connections by their holonomies or
certain functions of it [3], definitions of derivatives [8] and the problem of a suitable definition
of the group of a loop for each particular gauge group [1].

In this paper we try a unified viewpoint for all of these results, developing a differential
calculus on differentiable spaces first and then applying it to the group of loops and the path
bundle. The use of differentiable spaces is inspired by the work of Chen [5], although we
follow a different direction in the definition of vector fields and differentials forms. Most of
the work is also based on the papers by Barrett [3] and Lewandowski [9].
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The paper is organized as follows, in section 2 we recall the definition of the group of
loops and the path bundle.

In section 3 we defindifferentiable spaceas a setA with a family of plots (functions
from open sets dR” to A), then we can say that a function from a differentiable sphteR
is differentiable, it is when its composition with every plot is differentiable. As examples of
differentiable spaces we can mention the following.

e The group of loopg, with plots defined as functions frobi to £ induced by piecewise
differentiable functions: U x [0, 1] — M such thatf,(0) = f,(1) = 0. The same is
true for the path bundl® M but with free ends.

o Differentiable manifolds with plots taken to be all differentiable functions from open
subsets oR” to the manifold.

e The group of diffeomorphisms a¥f, Diff (M), with plots taken as functions froii to
Diff (M), induced by differentiable functions frobh x M — M.

e Spin networks with plots generated from functighsU x ' — M wherer is an abstract
graph, that isb is a family of embeddings df in M parametrized by/.

Having this notion of differentiable space we define differentiable functions as mentioned

above and define a vector tangent to a poirat A as differential operators (see definition 3.2)

D: C*(A) — Rsatisfyingthe Leibnitzrul®(fg) = D(f) g(x)+f(x) D(g) andvector fields

on A as differential operator¥: C*(A4) — C*(A) satisfyingX(fg) = X(f) g+ f X(g).
Differential forms are defined as usually as multilinear alternated functions of tangent vectors
and exterior derivatives are defined by a familiar formula of differential geometry (see
definition 3.6). These constructions have the usual properties of the corresponding objects
in finite-dimensional differentiable manifolds, in fact, they are the same when a differentiable
manifold is considered as a differentiable space, and other constructions such as fibre bundles
and connections can be generalized to differentiable spaces in a straightforward way. We
remark that the use of differentiable spaces is valuable in itself and most of the work in this
paper is devoted to showing the generality and usefulness of this kind of spaces.

In section 4 we shall recall the definition of the Mandelstam derivative. In section 5
we shall define theainiversal connection 1-formThis will be a differential 1-form in the
sense of section 3 and we shall be able to express the connection derivative in terms of
this universal connection. Section 6 contains our main result. We shall prove that the loop
derivative considered in [8] is nothing but the curvature of the universal connection 1-form.
Consequently, we obtain the Bianchi identities in [8] as the usual Bianchi identities associated
with the universal connection 1-form. Finally, in section 7 we shall see how to represent a
particular gauge theory using the results we obtained in the previous sections.

2. Group of loops, path bundle and parallel transport

The group of loops of a manifold is defined in the following way. Let be a fixed point

in M, and letL be the set of piecewise smooth padt(s), parametrized from [01] such that

a(0) = a(1) = 0 and P M be the set of paths such that0) = o. In the space of paths we
define the product of two patlsand g such that(1) = B(0) by o - B(r) isa(2¢) if t < %

or (2t — 1) if + > 3. And define the inverse path~* by o= (t) = (1 —1). In L we
consider the equivalence relation that identifies paths that differ by an orientation-preserving
reparametrization, then we say that two pattesdg are elementary equivalent if there exists

p, &,y suchthatt = p-£andpg = p-y -y 1 & and we define the equivalence relatior: g

iff there exist a sequence of paths= «g, a1, ..., @, = B with «; elementary equivalent to

Oj+1.
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Definition 2.1. The group of loops is the quotient spacd.dby this equivalence relation and
is denoted by..

Observation 2.2. £ with the product of paths has a group structure with invexsé and
identity the constant path.

There exist others possibilities for the definition of the equivalence relation that can lead
to different loop groups [8, 1, 13].
Let P M denote the set of piecewise smooth pathd0, 1] — M, with «(0) = o.

Definition 2.3. The path bundle, denoted /M, is the quotient space df M by the same
equivalence relation that fof.

The group of loops acts daM by left multiplication. Asis explained in next section there
exists a topology, the so-called Barrett topology, that mgkest, M, £, IT) the topological
principal £-bundle, wherd1: PM — M is the function that assigns to each path its endpoint,
thus the fibre over, IT~1(x) is the set of paths from to x module the above-mentioned
equivalence relation.

There is a canonical way to define the parallel transport in this bundle, given & path
M with initial point x and final pointy, and an elementy] of the fibre of PM overx, where
« is a path going frona to x, the parallel transport o8] overy is [« - y], which is an element
of the fibre overy.

3. Differentiable structure

In this section we define differentiable functions, tangent vectors, vector fields and differential
forms for the group of loops and the path bundle.

To define differentiable functions we follow the idea of Barrett [3] and defineraotopy
of paths to be a function from an open gétof R" to PM (or L), ®:U — PM that is
obtained from a functiom: U x [0, 1] — M, such that there exists a partition of, [[],
0=1iy <ip < - < i, =1, such thap is differentiable inU x [i, i;x+1]. Then we
say that a functiory: PM — R is differentiable if its composition with every homotopy is
differentiable.

We will advance further and define concepts such as vector fields and differential forms,
but these concepts seems to appear more naturally if we work in a more general framework.

3.1. Differentiable spaces

Definition 3.1. A differentiable spacés a setA with a family of functions from open subsets
of R" to A, calledplots such that if®: U — A is a plot and ifg: V — U is differentiable,
UcCR",VcRthendog:V — Aisaplot.

We endow a differentiable spadewith the topology induced by the plots, that is, a subset
U C Ais open if and only ifd~1(U) is open for every plot.

The group of loops and the path bundle are differentiable spaces with the plots taken to
be homotopies, and the topology considered is the Barrett topology.

As other examples of differentiable spaces we could mention a differentiable manifold
considering all the differentiable functions from open subset®”ofo M as plots, and the
diffeomorphism group oM, Diff (M), considering as plots the functions from open getf
R” to Diff (M) induced by differentiable functions frobi x M — M.

The other way of constructing new differentiable spaces is by products of other
differentiable spaces. Given two differentiable spagdeand B we can give to their product
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A x B astructure of differentiable space; the plotsgiof B are constructed g, ®') whered
is a plot ofA and®’ is a plot of B and any composition of these with differentiable functions.

3.2. Differentiable functions

Generalizing the definition given for the path bundle and the group of loops we define a function
f: A — Rfrom adifferentiable spacé to be differentiable if and only if its composition with
every plot ofA is differentiable. For functiong: A — B between two differentiable spaces,

we considerf differentiable iff the composition of with every plot ofA is a plot of B. For
example, the product of loopsC x £ — £ and the action of overPM, -: L x PM — PM

are differentiable.

3.3. Tangent vectors

We want to define tangent vectors in the group of loops, remembering the definition of vectors
in a manifold as directional derivatives, it is natural to define tangent vectors in the group of
loops, as Lewandowski does [9], as operatBracting in the spac€°(£) such that

Df = E fod
ds|,_o

where @ is a homotopy®: (—e,€¢) — L. However, in our context that definition is
not appropriate, the loop derivative is defined by means of a second-order derivative (see
definition 6.1) and it is not clear how to define the bracket of vector fields. We are thus led to
consider higher-order derivatives.

We will use the multi-index notation. A multi-index is artuple of non-negative integers
o= (ay,ap,...,a,),|la|=a1+---+a, and

glel
= a a
oxyt ... 0xy"

where all the derivatives are takenin= 0.

801

’

Definition 3.2. Let xo be a point ofA, an elemental differential operator at is a linear
transformationD: C*°(A) — R such that there exists a pldt: U — A, ®(0) = xo and a
multi-indexa such that

D(f) =0%(f o D), Vf e C®A).

The space dfifferential operators aify, denoted byD, A is the vector space generated by the
elemental differential operators.

Thus a differential operator at is a finite linear combination of elemental differential
operators ato.

We now define the order of a differential operator. kgj be the ideal inC*>°(A) of the
functions that vanish imo, andm’; be the set of linear combination of products:dtinctions
that vanish inxg. We define theorder of a differential operator aty, D, as the minimum
such thatD|mg;'1 = 0. Itis straightforward to check that a differential operatatatD, is of
firstorderD(fg) = D(f) g(xo) + f(x0) D(g), this motivates the following definition.

Definition 3.3. Thetangent vectorsf a spaceA at the pointxg are the first-order differential
operators atxg and the vector space of all tangent vectorsigts the tangent space of at
xo, denoted ag A.
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When we have a functiofi: A x B - RandD € T, A, D' € T, B thenD, f(x, y),
meaning the differential operator applied only on the first variable, is a differentiable function
from BtoR, andD, D} f(x, y) = D; D, f (x, y) the differential operators applied in different
variables commutes, the proof is |mmed|ate When we lfave x A — R, D' € T, B then

Dxf('x’-x) = Dx.f(-xa-xo) + DXf(XO?-x)a
the proof of this requires the following theorem.

Theorem 3.4. Ty, ypA X B = T,,A @ T, B.

Proof. If D is an elemental differential operator (diff. op.) @b, yo) we can see from the
definition thatD can be written as

D = Do"'[)O'*'ZDiﬁh
i=1
whereD are diff. op. atvo andD are diff. op. atyo, then any differential operator can be written
in this way.

Next we impose that the operatbrbe of first order, considering the cagés, y) = f(x)
andg(x, y) = h(y) we see thaDg and Dy are of first order, the®’ = YD D; is also of
first order.

We want to prove thab’ is null, by absurdity, let us assume that it is not null.

The operatod’ can be written in many ways as a soif_, D; D;, we choose those with
less number of terms, theb; are linearly independent (if not we can combine terms to obtain
a sum with fewer terms).

131 is not null (if not we can eliminate the terfnlf)l of the sum) then there is a function
¢ that vanishes iny such thatD;(g) # 0; for all functions f that vanish inxo we define
h(x,y) = f(x)g(y) thenD’'(h) = 0 becausé: is a product of two functions that vanish in
(x0, yo) and D’ is of first order, then

D1(f)Da(g) + -+ Dy(f)Du(g) =0
forall f andﬁl(g) # 0, thenD; are linearly dependent, which is absurd. O

Given a differentiable functiorf: A — B whereA andB are differentiable spaces, then
we can define its differential as a map frdi to T, B, let D € T, A, the operatot, f (D)
is defined ag/, f(D)(g) = D(g o f), whereg is any function orC*(B).

3.4. Tangent bundle

We can define the tangent bundlei of a differentiable spacd as the disjoint union of the
tangent spaces, and it can be given a differentiable structure, for this we take as an auxiliary
construction the differential bundI2A defined as the disjoint union of the spaces of differential
operators at for everyx € A, and the projectiom: DA — A such thatr(D) = x iff Disa
differential operator irx.

Given a plot®: V x U — A we define an elemental pldt: U — DA asV¥ = 9*®
where the derivation is taken only with respect to the first variables (those whichig that
is W(x) is the differential operator i (0, x) such that¥ (x)(f) = 35 f(®(y, x)). Then we
define the plots i A as finite linear combinations of elemental plats= a; W, +- - - +a, ¥,
wherew;: U — DA are elemental plots ando ¥; = 7 o ¥}, in this wayW; (x) are differential
operators over the same point, the sum is a differential operator at that paint. DA thus
we define a plotirff’ A as a functiond: U — T A that is a plot inDA.
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We now investigate when the tangent bundle is locally trivial, that is for every point
x € A there is a neighbourhoad of x such thatT'U is diffeomorphic toU x T, A with a
diffeomorphism that is linear restricted to each tangent space. A sufficient condition for this
is the existence for every pointe A of a neighbourhood of x and a differentiable function
fiU xU xU — A. We can see thig" as a functionf, , : U — A indexed byx,y € U,
such thatf, ,(y) = x, and f, , is a local diffeomorphism, then the differential ¢f , is a
function fromT, A to T, A, thus we can construct a diffeomorphigm7’U — U x T, A as

¢ (D) = dx(p) fr.x(p)(D).

In the case of. we construct the functioyi simply asf («, 8, y) = a-B~1-y. INPM we
definef (a, B, y): II~Y(U) x T~X(U) x TI"1(U) — PM whereU is a convex neighbourhood
of the final point ofy asf(«, B, y) = a- €45 By - € Wheree, 4 is the straight line joining
the end points ok andg, ande is €, g moved to the final point of as we can see in figure 1.

Figure 1. Plot of f(a, B, y).

3.5. Vector fields

We define vector fields as sections of the tangent bundle, a section is a differentiable function
X:A — TA, suchthatr o X = id, that isX (x) is a tangent vector over the point Given a
sectionX there is an associated operafch“(A) — C*(A) such thatf((f)(x) =Xx)f.
Similarly, we can define sections IDA and its associated operators, then we have:

e A section of DA is a section off" A (vector field) iff it satisfies the Leibnitz rule.
e If D1, D, are sections 0D A then D, D, (considered as a operator) is a sectiorDof.
e As a consequence of the latter, the bracket of two vector fields is well defined.

The fact that the bracket is well defined permits us to define the Lie algeltasfthe
space of right-invariant vector fields ih A vector fieldX: £ — T L is right invariant if for
everyy € £,dR, o X = X o R,, whereR,: L — L is the multiplication byy on the right
R,(x) =a-yand dR,:TL — TListhe differential ofR,. The Lie bracket of two elements
of the Lie algebra of is simply the bracket of the right-invariant vector field.

3.6. Differential forms

The differential forms are defined as usual in differential geometry. First we dgjih A
as the fibre bundle ovet such that the fibre over each elemens @B’ T, A, that is a element
of @’ TAis ap-tuple (v, ..., v,) wherevs, ..., v; are tangent vectors td over the same
point.
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Definition 3.5. A p-form w is defined as an alternated, multilinear differentiable function
w: P’ TA - R.

This means that for evewyw,: (T, A)? — R is a multilinear and alternated function. The
differentiability of w implies that for everyp-tuple of vector fieldsX;, ..., X, the function
x = 0 (X1(x), ..., X,(x)), denoted simply bw (X1, ..., X,,), is differentiable.

Next we define the exterior derivative of a form, now we require that the tangent bundle
of A be locally trivial. Because of local triviality of the tangent bundle every vecterT, A
can be extended locally to a vector fie\d U — T A, such thatl/ is a neighbourhood of
andX (x) = v, thus it is correct to define the exterior derivative,dvs, . . ., v,) using vector
fields X4, ..., X, such thatX; (x) = v; if we prove that the result only dependsw®an.. ., v,.

Definition 3.6. Theexterior derivativeof w is defined as

do (X1, ..., Xu1) =

1 n+l ) R
— 1[2(—1)”1x,-(w<xl, o X X))
i=1

+Y DY o(X, X)) X X X xm)]

i<j

By the formula we see thatgis also multilinear and alternated, but it remain to be proved
that it is local too. Let us prove this in the next lemma.

Lemma 3.7.dw (X3, ..., X,)(x) only depends on the valugs (x).

Proof. Because of linearity, it is sufficient to show thab@X4, ..., X,+1)(x) = 0 when
X1(x) = 0. Looking at the formula it is also sufficient to show that
Xi(x) (@(X1, ... Xiv oo Xus1) *o (X1, X1, Xo oo Xiy o, Xus1) (x) = 0.

Let us consider the 1-form(X) = w(X, Xo, ..., X, ..., X,+1) then what we have to
prove is

Y(x)o(X)+o(X,Y]) (x) =0

wheneverX (x) = 0.
Nextwe construct, using alocal trivialization of the tangentbundle, afun&tidhx U —
T A, whereU is a neighbourhood of that verifies

e X(y,z) e T,A
e X(y,y) =X
e X(y,x)=0.
The proof then follows looking at the equalities

Yy(x) o(X(y, y)) =Y, (x) o(X(y, x)) +Y,(x) o(X (x, )
=Y,(x)o(X(x,y) = oY, (x) X(x,y))
[X,Y](x) = =Y, (x) (X(y) = =Y, (x) (X (¥, y))
==Y, (x) (X (y, %)) = Yy (x) (X(x, y)) = =Y, (x) (X(x, y)) O
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4. Mandelstam derivative

The parallel transport defined in section 2 induces a set of plan@s\inthat will be the
horizontal planes of the universal connection 1-form that we shall define later.

Definition 4.1. The Mandelstam derivative ot} in the direction ofv € T, M is given by
D, f(my) = dc(f 0 D) (v)

whereg is a family of curves represented by

7T, (2t)

g((2r =1 g™(y)

~

d(y, 1) =

Nk O
VAN
NN
[N

and

() =[t— ¢y, 1]
whereg: U — M is a chart withU a convex neighbourhood 6fand g(0) = x.

Observation 4.2.1f we call v the segment (in the chagd from x to x + ev then
[y - 8v) = f(m;) +eDy f +o(e).

Thus the Mandelstam derivative coincides with the one defined in [8].
It needs to be proved that the definition does not depend of the ghtant that we first
state a lemma proved in [3].

Lemma 4.3.If ¢: (—¢,€) x [0,1] — M is a homotopy of loops whee(0, t) = o is the
constant loop and (s) = [t — ¢ (s, t)] then for any differentiable functiofi: £ — R,
d

— ®=0.
ds J:Of °

Proof. ¢(0,t) = o for all ¢ in [0, 1] so we can assume thal(s, t) is contained in a
neighbourhood ob for all s € (—¢, €) and we can choose that neighbourhood such that
thereisalocal charta¥Wf, g: U — M, g(0) = 0. We considep: (—¢, €) x [0, 1] — R", then
(s, t) = (Pr(s, 1), ..., Pu(s, 1)), let

@' (51, -y Sps 1) = (P1(51, 1), -, Pu (s, 1)),

and®’ the associated function frotr-¢, €)" to PM, let A: R — R" be the diagonal function,
theng = ¢’ o A, and® = &’ o A, then

d d d

— b= O +.. .+ P’

ds ‘Yzof ° 951 Je 08y Je
but when all the; except one are zero the lodp is contained in a segment, and hence is null,
thend/ds; f o ® = 0. |

Proposition 4.4. Leta: (—e, €) — M be any curve witlx (0) = xNand(x(O) = v, define the
homotopy of path®(s) = ) - [t — a(st)], and let the operatoD, be such that

- d
Dy(f) = —

o
ds s:Of °

thenD, = D,.
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Proof. Leta(s) = (a1(s), ..., a,(s)) inthe charfg and assume that in that chart e; where
e1, ..., e, is the canonical basis &", thenw; = 1 ande} =0,i =2,...,n.

We construct the homotopy of loods such thatd (s) is the loop based at formed by
the composition of the curvwe from x to «(s) then the straight segment (in the chgytfrom
a(s) to g((as(s), 0, ..., 0) and then the segment 1o

By lemma 4.3(d/ds) ;=0 f (r} - ®(s)) = 0 and expanding (z; - ®(s)) until first order
in s we obtain

f@i - @) = fGr)) +sDy(f) + Y () Do, (f) — ea(s) Doy (f),
i=2

taking limit whens — 0 we obtainD, (/) = D,(f). O

5. Universal connection 1-form

Following which is the habitual definition of the connection 1-form of the theory of principal
bundles, we define a connectiorfM, that is a 1-form evaluated in the Lie algebsdr, £ of
L, such that it is equivariant under the action of the group and is the identity over the vertical
subspaces [6].

GivenD € T,PM and f € C*(L) we first transformf into a function on an open
subset ofP M given byg(y) = f(y - v(y) - 7~ 1), wherev(y) is the segment that joing (y)
(the final point ofy) with IT(sr) (the final point ofr) in a charth: U — M with U a convex
neighbourhood of 0 antl(0) = I (xr). We defines, (D)(f) = D(g).

Lemmab5.1.§ is al-form in PM with values in7, L.

Proof. First we must show that the definition does not depend of the éharbsen, for that
we investigate how a vectdd € T,,P M can be decomposed into a horizontal and a vertical
part:
D, f(y) =Dy f(y -v(y)-7mt-m-v()™)
=D, f(y -v(y) - 7w )+ D, f(m - v(y)™) = dU (D)) (f) + Dy(f)

wherev = dIT(D) andU: L — PM, U (&) = & - ; becauseD, does not depend of the chart
we see that, does not depend on the chart.

To verify thats is a 1-form inP M evaluated irf, £ we define the functiog: IT~*(U) x
nYU) - £, gly,n) =y -v-n 1 thens, (D)(f) = d,—.g(y, 7)(D), thus we can see
that$ is differentiable. |

Let us see that is really a connection.

Lemma 5.2. § satisfies the definition of a connection.

Proof. To prove this we have to see first that it is the identity over the vertical vectors and must
verify the compatibility condition over the action of the group.

LetU beU: L — PM,U(y) =y - m, the vertical vectors iff,, P M are those that lie at
the image of @/, and making the calculatiof), o dU we obtain
8- (dUD) () =dUD), f(y -v-m ) =Dy f(y'-m-v-n"Y =Dy f(y") = D(f).

LetU, beU,:PM — PM,Uy(w) =a - 7,
Ug8)x (D) (f) = 8un AUe (D)) (f) = dUs (D), f(y -v -7 -0

=Dy f(a-n'-v-7wt a™l) = Ad(@)s, (D)(f). O



2706 M Reiris and P Spallanzani

As an illustrative example let us see how the connection derivative given in [8] enters into
this context. Let us take a section of the bundle around the point of the fibre ovér That
means an election of a family of curvés U — PM whereU is an open neighbourhood of
thex pointy IT(®(y)) = y, y € U. Given a functionf (z)) we define the tangent vector to
the sectiond as the operator that applied fogives

S df (™)
Dof(rg) =duf o ®(x) = =—2—.
We observe that the projection of this vector oliis v.

Figure 2. The figure on the left represent a trivialization. Those on the right are the vertical and
horizontal vectors decomposing the tangent vector into the trivialization.

6. The loop derivative as a curvature

In this section, we will see that the loop derivative defined in [8] represents the curvature of
the universal connection 1-form defined above.

Definition 6.1. The loop derivative is a vector field ihthat applied to a functiorf (y),y € £
is
. Pfr-On 1y
Au,v(”o).f(y) =
de10en
whered = [, , is the parallelogram, taken in a local chart 8f, with vertex atr and edges
in the directions of the vectorsandv with lengthse; - |lu|| ande; - ||v]|, respectively.

Its needs to be checked that the loop derivative does not depend on the chart used to define
the parallelograni], we postpone this until the end of this section.
The curvature form is written in terms of the connection form as (cf [6])

Q=ds+1[s,0].
Since the curvature form is horizontal it suffices to evaluate it on horizontal vectors, that
is Mandelstam derivatived,,, D,, that are horizontal vector fields defined in a neighbourhood
of the pointx.

In this context applying the expression for the exterior derivative given in section 3, and
evaluating the curvature on the horizontal fieldls, D, we obtain

Q(D/u Dv) = %[DH,(S(DU) - DVS(DM) — 8([DM’ Dv]) + [S(DM), S(Dv)]]
= —18(Dy, D)) = —3[D,, D],

because the connection form is null on horizontal vectors and is the identity on vertical vectors
and [D,, D,] is vertical.
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In [8] itis proved that
[Dy, D] = Ay,
thus
Ay =—-22(D,, D,).

This also proves that the loop derivative does not depend on the chart taken in the definition,
because the Mandelstam derivative does not depend on any chart.

In this context the Bianchi identity presented in [8] follows naturally from the Bianchi
identity for the curvature iP M

dQ =[5, 91,
dQ(DH, D,, Dé) = DHAU,g + DUAg,M + DgAH,V =0

becaused, ?](D,,, D,, D¢) = 0.

7. Some examples

Every principal bundle can be seen as an extension of the path bundle [6]. The bundle morphism
is expressed

f@@3) =z Gy,

whereIl(x GY) is the final point of the horizontal path @, that is projected ovell:. We
also have the following identity between the connections:

f¥60 =dH 0.
Helped with this formula, the identities presented in [8] are,

8, ()H(y) = A,(x)H(y) = dH 0 8(D,);
Auv()H(y) = Frn()H(y) = dH 0 Q(D,,, D).

As another example we consider the vector fields,if' (X), whereX is a vector field in
M defined as

d
CX)f(y) = & fex(s)oy),
0

s=

we prove that
[CX), cN]=C(X, Y]

that is, the operator8 (X) satisfy the commutation relations of the diffeomorphism constraint
of general relativity.

The group of diffeomorphisms aff, Diff (M), has a structure of differentiable space
and given a vector field in M we can associate a vector field(X) in Diff (M). Let
¢: Diff (M) x £ — L be the action of DiftM) in £ and letV (X) be the vector fieldV (X), 0)
in Diff (M) x L, then it follows that ¢ o V(X) = C(X) o ¢; the proof follows by showing
that [V (X), V(Y)] = V([X, Y]) and the familiar identity [@ o Z1, d¢ o Z5] = [Z1, Z2] o ¢.
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8. Discussion

We end with a discussion section. To begin with we note the main points of the paper. We have
tried to show the utility of differentiable spaces and the calculus therein developed to rigorous
and unified proofs of well established results and tools. We detach it in a clear definition
and local triviality of the tangent bundle of the group of loops and the path bundle given by
the respective definitions of their plots, a well established and local formula for differential
forms and the exterior derivative, and a unified viewpoint for all the derivatives in particular
proving that the loop derivative is the curvature of theversal connection 1-fornSecondly,

we want to mention these tools in the context of the loop representation of quantum gravity.
It is well known that the Einstein equations being diffeomorphism invariant imposes serious
constraints on a possible theory of quantum gravity. For instance, the loop representation of
it must be written in terms of knots invariants (allowing intersections on them). This seems
to be at odds with our point of view because we are using a differentiable perspective but it
seems that quantum gravity being expressed as functions of the topology class of a loop can
never be differentiable at all. In spite of this appearance new results [7] seem to show that on
extending loop functions to distributions, Vassiliev invariants are ‘loop differentiable’. These
results would serve (tentatively) as a differentiable arena for quantum gravity. Although our
concept of differentiable function is not distributional, it seems that much of the work in this
paper could be done along these lines. The differentiable way of thinking of quantum gravity
is still promising.
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