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Abstract. Recently, a set of tools has been developed with the purpose of studying quantum
gravity. Until now, there have been very few attempts to put these tools into a rigorous mathematical
framework. This is the case, for example, for the so-calledpath bundleof a manifold. It is
well known that this topological principal bundle plays the role of a universal bundle for the
reconstruction of principal bundles and their connections. The path bundle is canonically endowed
with parallel transport and, associated with it, important types of derivatives have been considered
by several authors: the Mandelstam derivative, the connection derivative and the loop derivative.
Here we shall give a unified viewpoint for all of these derivatives by developing a differentiable
calculus on differentiable spaces. In particular, we shall show that the loop derivative is the curvature
of a canonically defined 1-form that we shall call theuniversal connection 1-form.

PACS number: 0420

1. Introduction

The use of paths for the study of geometric properties of manifolds have been shown to be a
powerful and rich tool. This seems to be due to the fact that paths naturally carry information
between their two extreme points. One example of such a transit of information is given by
parallel transport, and its use introduces a sort of nonlinear duality between loops (a particular
equivalence class of piecewise paths) and connections. This duality is the root for the loop
representation of Yang–Mills quantum theories. It began in the work of Mandelstam [10, 11]
and was followed by many others. Since the discovery by Ashtekar of a new set of variables,
making gravity closer to a gauge Yang–Mills theory than geometrodynamics, much of the
attention on canonical quantization for gravity has turned to trying to find a loop representation
of it. In particular, it has led to solving(2 + 1)-dimensional gravity exactly [2]. After the
importance of loops in gauge theory was really understood many people tried to realize a
rigorous theory for it and their calculus. There are several efforts in this respect that cover
different topics of the problem of the reconstruction of connections by their holonomies or
certain functions of it [3], definitions of derivatives [8] and the problem of a suitable definition
of the group of a loop for each particular gauge group [1].

In this paper we try a unified viewpoint for all of these results, developing a differential
calculus on differentiable spaces first and then applying it to the group of loops and the path
bundle. The use of differentiable spaces is inspired by the work of Chen [5], although we
follow a different direction in the definition of vector fields and differentials forms. Most of
the work is also based on the papers by Barrett [3] and Lewandowski [9].

0264-9381/99/082697+12$30.00 © 1999 IOP Publishing Ltd 2697



2698 M Reiris and P Spallanzani

The paper is organized as follows, in section 2 we recall the definition of the group of
loops and the path bundle.

In section 3 we definedifferentiable spacesas a setA with a family of plots (functions
from open sets ofRn toA), then we can say that a function from a differentiable spaceA toR
is differentiable, it is when its composition with every plot is differentiable. As examples of
differentiable spaces we can mention the following.

• The group of loopsL, with plots defined as functions fromU to L induced by piecewise
differentiable functionsf : U × [0, 1]→ M such thatfx(0) = fx(1) = o. The same is
true for the path bundlePM but with free ends.
• Differentiable manifolds with plots taken to be all differentiable functions from open

subsets ofRn to the manifold.
• The group of diffeomorphisms ofM, Diff (M), with plots taken as functions fromU to

Diff (M), induced by differentiable functions fromU ×M → M.
• Spin networks with plots generated from functions8:U×0→ M where0 is an abstract

graph, that is8 is a family of embeddings of0 in M parametrized byU .

Having this notion of differentiable space we define differentiable functions as mentioned
above and define a vector tangent to a pointx ∈ A as differential operators (see definition 3.2)
D:C∞(A)→ Rsatisfying the Leibnitz ruleD(fg) = D(f ) g(x)+f (x)D(g)and vector fields
onA as differential operatorsX:C∞(A) → C∞(A) satisfyingX(fg) = X(f ) g + f X(g).
Differential forms are defined as usually as multilinear alternated functions of tangent vectors
and exterior derivatives are defined by a familiar formula of differential geometry (see
definition 3.6). These constructions have the usual properties of the corresponding objects
in finite-dimensional differentiable manifolds, in fact, they are the same when a differentiable
manifold is considered as a differentiable space, and other constructions such as fibre bundles
and connections can be generalized to differentiable spaces in a straightforward way. We
remark that the use of differentiable spaces is valuable in itself and most of the work in this
paper is devoted to showing the generality and usefulness of this kind of spaces.

In section 4 we shall recall the definition of the Mandelstam derivative. In section 5
we shall define theuniversal connection 1-form. This will be a differential 1-form in the
sense of section 3 and we shall be able to express the connection derivative in terms of
this universal connection. Section 6 contains our main result. We shall prove that the loop
derivative considered in [8] is nothing but the curvature of the universal connection 1-form.
Consequently, we obtain the Bianchi identities in [8] as the usual Bianchi identities associated
with the universal connection 1-form. Finally, in section 7 we shall see how to represent a
particular gauge theory using the results we obtained in the previous sections.

2. Group of loops, path bundle and parallel transport

The group of loops of a manifoldM is defined in the following way. Leto be a fixed point
in M, and letL be the set of piecewise smooth pathsα(t), parametrized from [0, 1] such that
α(0) = α(1) = o andPM be the set of paths such thatα(0) = o. In the space of paths we
define the product of two pathsα andβ such thatα(1) = β(0) by α · β(t) is α(2t) if t < 1

2

or β(2t − 1) if t > 1
2. And define the inverse pathα−1 by α−1(t) = α(1− t). In L we

consider the equivalence relation that identifies paths that differ by an orientation-preserving
reparametrization, then we say that two pathsα andβ are elementary equivalent if there exists
ρ, ξ , γ such thatα = ρ · ξ andβ = ρ ·γ ·γ−1 · ξ and we define the equivalence relationα ≈ β
iff there exist a sequence of pathsα = α0, α1, . . . , αn = β with αi elementary equivalent to
αi+1.
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Definition 2.1. The group of loops is the quotient space ofL by this equivalence relation and
is denoted byL.

Observation 2.2.L with the product of paths has a group structure with inverseα−1 and
identity the constant path.

There exist others possibilities for the definition of the equivalence relation that can lead
to different loop groups [8, 1, 13].

Let PM denote the set of piecewise smooth pathsα : [0, 1]→ M, with α(0) = o.
Definition 2.3. The path bundle, denoted byPM, is the quotient space ofPM by the same
equivalence relation that forL.

The group of loops acts onPM by left multiplication. As is explained in next section there
exists a topology, the so-called Barrett topology, that makes(PM,M,L,5) the topological
principalL-bundle, where5:PM→ M is the function that assigns to each path its endpoint,
thus the fibre overx, 5−1(x) is the set of paths fromo to x module the above-mentioned
equivalence relation.

There is a canonical way to define the parallel transport in this bundle, given a pathγ in
M with initial point x and final pointy, and an element [α] of the fibre ofPM overx, where
α is a path going fromo to x, the parallel transport of [α] overγ is [α ·γ ], which is an element
of the fibre overy.

3. Differentiable structure

In this section we define differentiable functions, tangent vectors, vector fields and differential
forms for the group of loops and the path bundle.

To define differentiable functions we follow the idea of Barrett [3] and define ahomotopy
of paths to be a function from an open setU of Rn to PM (or L), 8:U → PM that is
obtained from a functionφ:U × [0, 1] → M, such that there exists a partition of [0, 1],
0 = i0 < i1 < · · · < in = 1, such thatφ is differentiable inU × [ik, ik+1]. Then we
say that a functionf :PM → R is differentiable if its composition with every homotopy is
differentiable.

We will advance further and define concepts such as vector fields and differential forms,
but these concepts seems to appear more naturally if we work in a more general framework.

3.1. Differentiable spaces

Definition 3.1. A differentiable spaceis a setA with a family of functions from open subsets
of Rn to A, calledplots, such that if8:U → A is a plot and ifg:V → U is differentiable,
U ⊂ Rn, V ⊂ Rk then8 ◦ g:V → A is a plot.

We endow a differentiable spaceAwith the topology induced by the plots, that is, a subset
U ⊂ A is open if and only if8−1(U) is open for every plot8.

The group of loops and the path bundle are differentiable spaces with the plots taken to
be homotopies, and the topology considered is the Barrett topology.

As other examples of differentiable spaces we could mention a differentiable manifold
considering all the differentiable functions from open subsets ofRn to M as plots, and the
diffeomorphism group ofM, Diff (M), considering as plots the functions from open setsU of
Rn to Diff (M) induced by differentiable functions fromU ×M → M.

The other way of constructing new differentiable spaces is by products of other
differentiable spaces. Given two differentiable spacesA andB we can give to their product
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A×B a structure of differentiable space; the plots ofA×B are constructed as(8,8′)where8
is a plot ofA and8′ is a plot ofB and any composition of these with differentiable functions.

3.2. Differentiable functions

Generalizing the definition given for the path bundle and the group of loops we define a function
f :A→ R from a differentiable spaceA to be differentiable if and only if its composition with
every plot ofA is differentiable. For functionsf :A→ B between two differentiable spaces,
we considerf differentiable iff the composition off with every plot ofA is a plot ofB. For
example, the product of loops·:L×L→ L and the action ofL overPM, ·:L×PM→ PM
are differentiable.

3.3. Tangent vectors

We want to define tangent vectors in the group of loops, remembering the definition of vectors
in a manifold as directional derivatives, it is natural to define tangent vectors in the group of
loops, as Lewandowski does [9], as operatorsD acting in the spaceC∞(L) such that

Df = d

ds

∣∣∣∣
s=0

f ◦8

where8 is a homotopy8: (−ε, ε) → L. However, in our context that definition is
not appropriate, the loop derivative is defined by means of a second-order derivative (see
definition 6.1) and it is not clear how to define the bracket of vector fields. We are thus led to
consider higher-order derivatives.

We will use the multi-index notation. A multi-index is ann-tuple of non-negative integers
α = (a1, a2, . . . , an), |α| = a1 + · · · + an and

∂α = ∂ |α|

∂x
a1
1 . . . ∂x

an
n

,

where all the derivatives are taken inxi = 0.

Definition 3.2. Let x0 be a point ofA, an elemental differential operator atx0 is a linear
transformationD:C∞(A) → R such that there exists a plot8:U → A, 8(0) = x0 and a
multi-indexα such that

D(f ) = ∂α(f ◦8), ∀f ∈ C∞(A).
The space ofdifferential operators atx0, denoted byDx0A is the vector space generated by the
elemental differential operators.

Thus a differential operator atx0 is a finite linear combination of elemental differential
operators atx0.

We now define the order of a differential operator. Letmx0 be the ideal inC∞(A) of the
functions that vanish inx0, andmnx0

be the set of linear combination of products ofn functions
that vanish inx0. We define theorder of a differential operator atx0, D, as the minimumn
such thatD|mn+1

x0
= 0. It is straightforward to check that a differential operator atx0,D, is of

first orderD(fg) = D(f ) g(x0) + f (x0)D(g), this motivates the following definition.

Definition 3.3. Thetangent vectorsof a spaceA at the pointx0 are the first-order differential
operators atx0 and the vector space of all tangent vectors atx0 is the tangent space ofA at
x0, denoted asTx0A.
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When we have a functionf :A × B → R andD ∈ Tx0A, D′ ∈ Ty0B thenDxf (x, y),
meaning the differential operator applied only on the first variable, is a differentiable function
fromB toR, andDxD

′
yf (x, y) = D′yDxf (x, y) the differential operators applied in different

variables commutes, the proof is immediate. When we havef :A× A→ R,D′ ∈ Ty0B then

Dxf (x, x) = Dxf (x, x0) +Dxf (x0, x),

the proof of this requires the following theorem.

Theorem 3.4.T(x0,y0)A× B = Tx0A⊕ Ty0B.

Proof. If D is an elemental differential operator (diff. op.) at(x0, y0) we can see from the
definition thatD can be written as

D = D̄0 + D̂0 +
n∑
i=1

D̄iD̂i,

whereD̄ are diff. op. atx0 andD̂ are diff. op. aty0, then any differential operator can be written
in this way.

Next we impose that the operatorD be of first order, considering the casesg(x, y) = f (x)
andg(x, y) = h(y) we see thatD̄0 andD̂0 are of first order, thenD′ =∑n

i=1 D̄iD̂i is also of
first order.

We want to prove thatD′ is null, by absurdity, let us assume that it is not null.
The operatorD′ can be written in many ways as a sum

∑n
i=1 D̄iD̂i , we choose those with

less number of terms, then̄Di are linearly independent (if not we can combine terms to obtain
a sum with fewer terms).

D̂1 is not null (if not we can eliminate the term̄D1D̂1 of the sum) then there is a function
g that vanishes iny0 such thatD̂1(g) 6= 0; for all functionsf that vanish inx0 we define
h(x, y) = f (x) g(y) thenD′(h) = 0 becauseh is a product of two functions that vanish in
(x0, y0) andD′ is of first order, then

D̄1(f )D̂1(g) + · · · + D̄n(f )D̂n(g) = 0.

for all f andD̂1(g) 6= 0, thenD̄i are linearly dependent, which is absurd. �

Given a differentiable functionf :A→ B whereA andB are differentiable spaces, then
we can define its differential as a map fromTxA to Tf (x)B, letD ∈ TxA, the operatordxf (D)
is defined asdxf (D)(g) = D(g ◦ f ), whereg is any function onC∞(B).

3.4. Tangent bundle

We can define the tangent bundleTA of a differentiable spaceA as the disjoint union of the
tangent spaces, and it can be given a differentiable structure, for this we take as an auxiliary
construction the differential bundleDAdefined as the disjoint union of the spaces of differential
operators atx for everyx ∈ A, and the projectionπ :DA→ A such thatπ(D) = x iff D is a
differential operator inx.

Given a plot8:V × U → A we define an elemental plot9:U → DA as9 = ∂α8

where the derivation is taken only with respect to the first variables (those which lie inV ), that
is9(x) is the differential operator in8(0, x) such that9(x)(f ) = ∂αy f (8(y, x)). Then we
define the plots inDA as finite linear combinations of elemental plots9 = a191 + · · ·+an9n
where9i :U → DA are elemental plots andπ ◦9i = π ◦9j , in this way9i(x) are differential
operators over the same point, the sum is a differential operator at that point.TA ⊂ DA thus
we define a plot inTA as a function8:U → TA that is a plot inDA.
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We now investigate when the tangent bundle is locally trivial, that is for every point
x ∈ A there is a neighbourhoodU of x such thatT U is diffeomorphic toU × TxA with a
diffeomorphism that is linear restricted to each tangent space. A sufficient condition for this
is the existence for every pointx ∈ A of a neighbourhoodU of x and a differentiable function
f :U × U × U → A. We can see thisf as a functionfx,y : U → A indexed byx, y ∈ U ,
such thatfx,y(y) = x, andfx,y is a local diffeomorphism, then the differential offx,y is a
function fromTyA to TxA, thus we can construct a diffeomorphismφ: T U → U × TxA as

φ(D) = dπ(D)fx,π(D)(D).
In the case ofLwe construct the functionf simply asf (α, β, γ ) = α ·β−1 ·γ . InPMwe

definef (α, β, γ ):5−1(U)×5−1(U)×5−1(U)→ PMwhereU is a convex neighbourhood
of the final point ofγ asf (α, β, γ ) = α · εα,β ·β−1 ·γ · ε whereεα,β is the straight line joining
the end points ofα andβ, andε is εα,β moved to the final point ofγ as we can see in figure 1.

Figure 1. Plot off (α, β, γ ).

3.5. Vector fields

We define vector fields as sections of the tangent bundle, a section is a differentiable function
X:A→ TA, such thatπ ◦X = id, that isX(x) is a tangent vector over the pointx. Given a
sectionX there is an associated operatorX̂:C∞(A)→ C∞(A) such thatX̂(f )(x) = X(x)f .
Similarly, we can define sections inDA and its associated operators, then we have:

• A section ofDA is a section ofTA (vector field) iff it satisfies the Leibnitz rule.
• If D1,D2 are sections ofDA thenD1D2 (considered as a operator) is a section ofDA.
• As a consequence of the latter, the bracket of two vector fields is well defined.

The fact that the bracket is well defined permits us to define the Lie algebra ofL as the
space of right-invariant vector fields inL. A vector fieldX:L→ TL is right invariant if for
everyγ ∈ L, dRγ ◦ X = X ◦ Rγ , whereRγ :L → L is the multiplication byγ on the right
Rγ (α) = α · γ and dRγ : TL→ TL is the differential ofRg. The Lie bracket of two elements
of the Lie algebra ofL is simply the bracket of the right-invariant vector field.

3.6. Differential forms

The differential forms are defined as usual in differential geometry. First we define
⊕p

T A

as the fibre bundle overA such that the fibre over each elementx is
⊕p

TxA, that is a element
of
⊕p

T A is ap-tuple(v1, . . . , vn) wherev1, . . . , vi are tangent vectors toA over the same
point.
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Definition 3.5. A p-form ω is defined as an alternated, multilinear differentiable function
ω:
⊕p

T A→ R.

This means that for everyx ωx : (TxA)p → R is a multilinear and alternated function. The
differentiability ofω implies that for everyp-tuple of vector fieldsX1, . . . , Xn the function
x 7→ ωx(X1(x), . . . , Xp(x)), denoted simply byω(X1, . . . , Xp), is differentiable.

Next we define the exterior derivative of a form, now we require that the tangent bundle
of A be locally trivial. Because of local triviality of the tangent bundle every vectorv ∈ TxA
can be extended locally to a vector fieldX:U → TA, such thatU is a neighbourhood ofx
andX(x) = v, thus it is correct to define the exterior derivative dωx(v1, . . . , vn) using vector
fieldsX1, . . . , Xn such thatXi(x) = vi if we prove that the result only depends onv1, . . . , vn.

Definition 3.6. Theexterior derivativeofω is defined as

dω(X1, . . . , Xn+1) = 1

n + 1

[ n+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , X̂i , . . . , Xn+1))

+
∑
i<j

(−1)i+jω([Xi,Xj ], X1, . . . , X̂i , . . . , X̂j , . . . , Xn+1)

]
.

By the formula we see that dω is also multilinear and alternated, but it remain to be proved
that it is local too. Let us prove this in the next lemma.

Lemma 3.7. dω(X1, . . . , Xn)(x) only depends on the valuesXi(x).

Proof. Because of linearity, it is sufficient to show that dω(X1, . . . , Xn+1)(x) = 0 when
X1(x) = 0. Looking at the formula it is also sufficient to show that

Xi(x) (ω(X1, . . . , X̂i , . . . , Xn+1)) + ω([X1, Xi ], X2, . . . , X̂i , . . . , Xn+1) (x) = 0.

Let us consider the 1-formω(X) = ω(X,X2, . . . , X̂i , . . . , Xn+1) then what we have to
prove is

Y (x) ω(X) + ω([X, Y ]) (x) = 0

wheneverX(x) = 0.
Next we construct, using a local trivialization of the tangent bundle, a functionX:U×U →

TA, whereU is a neighbourhood ofx that verifies

• X(y, z) ∈ TyA
• X(y, y) = X(y)
• X(y, x) = 0.

The proof then follows looking at the equalities

Yy(x) ω(X(y, y)) = Yy(x) ω(X(y, x)) + Yy(x) ω(X(x, y))

= Yy(x) ω(X(x, y)) = ω(Yy(x)X(x, y))
[X, Y ](x) = −Yy(x) (X(y)) = −Yy(x) (X(y, y))

= −Yy(x) (X(y, x))− Yy(x) (X(x, y)) = −Yy(x) (X(x, y)) �
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4. Mandelstam derivative

The parallel transport defined in section 2 induces a set of planes inPM that will be the
horizontal planes of the universal connection 1-form that we shall define later.

Definition 4.1. The Mandelstam derivative onπxo in the direction ofv ∈ TxM is given by

Dvf (π
x
o ) = dx(f ◦8) (v)

whereφ is a family of curves represented by

φ(y, t) =
{
πxo (2t) 06 t 6 1

2

g((2t − 1) g−1(y)) 1
2 6 t 6 1

and

8(y) = [t 7→ φ(y, t)]

whereg:U → M is a chart withU a convex neighbourhood of0 andg(0) = x.

Observation 4.2. If we call δv the segment (in the chartg) fromx to x + εv then

f (πxo · δv) = f (πxo ) + εDvf + o(ε).

Thus the Mandelstam derivative coincides with the one defined in [8].
It needs to be proved that the definition does not depend of the chartg, for that we first

state a lemma proved in [3].

Lemma 4.3. If φ: (−ε, ε) × [0, 1] → M is a homotopy of loops whereφ(0, t) = o is the
constant loop and8(s) = [t 7→ φ(s, t)] then for any differentiable functionf :L→ R,

d

ds

∣∣∣∣
s=0

f ◦8 = 0.

Proof. φ(0, t) = o for all t in [0, 1] so we can assume thatφ(s, t) is contained in a
neighbourhood ofo for all s ∈ (−ε, ε) and we can choose that neighbourhood such that
there is a local chart ofM, g:U → M, g(0) = o. We considerφ: (−ε, ε)× [0, 1]→ Rn, then
φ(s, t) = (φ1(s, t), . . . , φn(s, t)), let

φ′(s1, . . . , sn, t) = (φ1(s1, t), . . . , φn(sn, t)),

and8′ the associated function from(−ε, ε)n toPM, let1:R→ Rn be the diagonal function,
thenφ = φ′ ◦1, and8 = 8′ ◦1, then

d

ds

∣∣∣∣
s=0

f ◦8 = ∂

∂s1
f ◦8′ + · · · + ∂

∂sn
f ◦8′

but when all thesi except one are zero the loop8′ is contained in a segment, and hence is null,
then∂/∂sif ◦8′ = 0. �

Proposition 4.4. Letα: (−ε, ε)→ M be any curve withα(0) = x and α̇(0) = v, define the
homotopy of paths8(s) = πxo · [t 7→ α(st)], and let the operator̃Dv be such that

D̃v(f ) = d

ds

∣∣∣∣
s=0

f ◦8

thenD̃v = Dv.
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Proof. Letα(s) = (α1(s), . . . , αn(s)) in the chartg and assume that in that chartv = e1 where
e1, . . . , en is the canonical basis ofRn, thenα′1 = 1 andα′i = 0, i = 2, . . . , n.

We construct the homotopy of loops8 such that8(s) is the loop based atx formed by
the composition of the curveα from x to α(s) then the straight segment (in the chartg) from
α(s) to g((α1(s), 0, . . . ,0)) and then the segment tox.

By lemma 4.3(d/ds)|s=0f (π
x
o ·8(s)) = 0 and expandingf (πxo ·8(s)) until first order

in s we obtain

f (πxo ·8(s)) = f (πxo ) + sD̃v(f ) +
n∑
i=2

αi(s)Dei (f )− α1(s)De1(f ),

taking limit whens → 0 we obtainD̃v(f ) = Dv(f ). �

5. Universal connection 1-form

Following which is the habitual definition of the connection 1-form of the theory of principal
bundles, we define a connection inPM, that is a 1-form evaluated in the Lie algebra= TeL of
L, such that it is equivariant under the action of the group and is the identity over the vertical
subspaces [6].

GivenD ∈ TπPM andf ∈ C∞(L) we first transformf into a function on an open
subset ofPM given byg(γ ) = f (γ · v(γ ) ·π−1), wherev(γ ) is the segment that joins5(γ )
(the final point ofγ ) with 5(π) (the final point ofπ ) in a charth:U → M with U a convex
neighbourhood of 0 andh(0) = 5(π). We defineδπ (D)(f ) = D(g).
Lemma 5.1. δ is a1-form inPM with values inTeL.

Proof. First we must show that the definition does not depend of the charth chosen, for that
we investigate how a vectorD ∈ TπPM can be decomposed into a horizontal and a vertical
part:

Dγf (γ ) = Dγf (γ · v(γ ) · π−1 · π · v(γ )−1)

= Dγf (γ · v(γ ) · π−1) +Dγf (π · v(γ )−1) = dU(δπ(D)) (f ) +Dv(f )

wherev = d5(D) andU :L→ PM,U(ξ) = ξ ·π ; becauseDv does not depend of the chart
we see thatδπ does not depend on the chart.

To verify thatδ is a 1-form inPM evaluated inTeL we define the functiong:5−1(U)×
5−1(U) → L, g(γ, π) = γ · v · π−1, thenδπ (D)(f ) = dγ=πg(γ, π)(D), thus we can see
thatδ is differentiable. �

Let us see thatδ is really a connection.

Lemma 5.2. δ satisfies the definition of a connection.

Proof. To prove this we have to see first that it is the identity over the vertical vectors and must
verify the compatibility condition over the action of the group.

LetU beU :L→ PM, U(γ ) = γ · π , the vertical vectors inTπPM are those that lie at
the image of dU , and making the calculationδπ ◦ dU we obtain

δπ (dU(D)) (f ) = dU(D)γ f (γ · v · π−1) = Dγ ′f (γ
′ · π · v · π−1) = Dγ ′f (γ

′) = D(f ).
LetUα beUα:PM→ PM, Uα(π) = α · π ,

(U ∗α δ)π (D) (f ) = δα·π (dUα(D)) (f ) = dUα(D)γ f (γ · v · π−1 · α−1)

= Dπ ′f (α · π ′ · v · π−1 · α−1) = Ad(α)δπ(D)(f ). �
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As an illustrative example let us see how the connection derivative given in [8] enters into
this context. Let us take a section of the bundle around the point of the fibre overx, πxo . That
means an election of a family of curves8:U → PM whereU is an open neighbourhood of
thex point y 5(8(y)) = y, y ∈ U . Given a functionf (πxo ) we define the tangent vector to
the section8 as the operator that applied tof gives

D̃vf (π
x
0 ) = ∂vf ◦8(x) =

df (πx+εv
0 )

dε
.

We observe that the projection of this vector overM is v.

Figure 2. The figure on the left represent a trivialization. Those on the right are the vertical and
horizontal vectors decomposing the tangent vector into the trivialization.

6. The loop derivative as a curvature

In this section, we will see that the loop derivative defined in [8] represents the curvature of
the universal connection 1-form defined above.

Definition 6.1. The loop derivative is a vector field inL that applied to a functionf (γ ), γ ∈ L
is

1u,v(π
x
o )f (γ ) =

∂2f (π ·� ·π−1 · γ )
∂ε1∂ε2

where� = �ε1,ε2 is the parallelogram, taken in a local chart ofM, with vertex atx and edges
in the directions of the vectorsu andv with lengthsε1 · ‖u‖ andε2 · ‖v‖, respectively.

Its needs to be checked that the loop derivative does not depend on the chart used to define
the parallelogram�, we postpone this until the end of this section.

The curvature form is written in terms of the connection form as (cf [6])

� = dδ + 1
2[δ, δ].

Since the curvature form is horizontal it suffices to evaluate it on horizontal vectors, that
is Mandelstam derivativesDµ,Dν that are horizontal vector fields defined in a neighbourhood
of the pointx.

In this context applying the expression for the exterior derivative given in section 3, and
evaluating the curvature on the horizontal fieldsDµ,Dν we obtain

�(Dµ,Dν) = 1
2

[
Dµδ(Dν)−Dνδ(Dµ)− δ([Dµ,Dν ]) + [δ(Dµ), δ(Dν)]

]
= − 1

2δ([Dµ,Dν ]) = − 1
2[Dµ,Dν ],

because the connection form is null on horizontal vectors and is the identity on vertical vectors
and [Dµ,Dν ] is vertical.



A calculus in differentiable spaces and its application to loops 2707

In [8] it is proved that

[Dµ,Dν ] = 1µ,ν,

thus

1µ,ν = −2�(Dµ,Dν).

This also proves that the loop derivative does not depend on the chart taken in the definition,
because the Mandelstam derivative does not depend on any chart.

In this context the Bianchi identity presented in [8] follows naturally from the Bianchi
identity for the curvature inPM

d� = [δ,�],

d�(Dµ,Dν,Dξ ) = Dµ1ν,ξ +Dν1ξ,µ +Dξ1µ,ν = 0

because [δ,�](Dµ,Dν,Dξ ) = 0.

7. Some examples

Every principal bundle can be seen as an extension of the path bundle [6]. The bundle morphism
is expressed

f (πxo ) = 5(πGx
o),

where5(πGx
o) is the final point of the horizontal path inGM, that is projected over5x

o . We
also have the following identity between the connections:

f ∗θ = dH ◦ δ.
Helped with this formula, the identities presented in [8] are,

δµ(x)H(γ ) = Aµ(x)H(γ ) = dH ◦ δ(D̃µ);
1µ,ν(π

x
o )H(γ ) = Fµν(x)H(γ ) = dH ◦�(Dµ,Dν).

As another example we consider the vector fields inL,C(X), whereX is a vector field in
M defined as

C(X)f (γ ) = d

ds

∣∣∣∣
s=0

f (ϕX(s) ◦ γ ),

we prove that

[C(X), C(Y )] = C([X, Y ])

that is, the operatorsC(X) satisfy the commutation relations of the diffeomorphism constraint
of general relativity.

The group of diffeomorphisms ofM, Diff (M), has a structure of differentiable space
and given a vector fieldX in M we can associate a vector fieldV (X) in Diff (M). Let
φ: Diff (M)×L→ L be the action of Diff(M) inL and letV̄ (X) be the vector field(V (X), 0)
in Diff (M) × L, then it follows that dφ ◦ V̄ (X) = C(X) ◦ φ; the proof follows by showing
that [V (X), V (Y )] = V ([X, Y ]) and the familiar identity [dφ ◦ Z1, dφ ◦ Z2] = [Z1, Z2] ◦ φ.
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8. Discussion

We end with a discussion section. To begin with we note the main points of the paper. We have
tried to show the utility of differentiable spaces and the calculus therein developed to rigorous
and unified proofs of well established results and tools. We detach it in a clear definition
and local triviality of the tangent bundle of the group of loops and the path bundle given by
the respective definitions of their plots, a well established and local formula for differential
forms and the exterior derivative, and a unified viewpoint for all the derivatives in particular
proving that the loop derivative is the curvature of theuniversal connection 1-form. Secondly,
we want to mention these tools in the context of the loop representation of quantum gravity.
It is well known that the Einstein equations being diffeomorphism invariant imposes serious
constraints on a possible theory of quantum gravity. For instance, the loop representation of
it must be written in terms of knots invariants (allowing intersections on them). This seems
to be at odds with our point of view because we are using a differentiable perspective but it
seems that quantum gravity being expressed as functions of the topology class of a loop can
never be differentiable at all. In spite of this appearance new results [7] seem to show that on
extending loop functions to distributions, Vassiliev invariants are ‘loop differentiable’. These
results would serve (tentatively) as a differentiable arena for quantum gravity. Although our
concept of differentiable function is not distributional, it seems that much of the work in this
paper could be done along these lines. The differentiable way of thinking of quantum gravity
is still promising.
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[4] Brügmann B and Pullin J 1993Nucl. Phys.B 390399
[5] Chen K 1973Ann. Math.97217
[6] Dupont J L 1978Curvature and Characteristic Classes(Lecture Notes in Mathematics) (Berlin: Springer)
[7] Gambini R, Griego J and Pullin JVassiliev Invariants: a New Framework for Quantum Gravity
[8] Gambini R and Pullin J 1996Loops, Knots, Gauge Theories and Quantum Gravity(Cambridge Monographs

on Mathematical Physics) (Cambridge: Cambridge University Press)
[9] Lewandowski J 1993 Group of loops, holonomy maps, path bundle and path connectionClass. Quantum Grav.

10879–904
[10] Mandelstam S 1962Ann. Phys., NY191
[11] Mandelstam S 1968Phys. Rev.1751580
[12] Tavares J N 1994 Chen integrals, generalized loops and loop calculusInt. J. Mod. Phys.A 9 4511
[13] Spallanzani P 1999 Groups of loops and hoopsPreprint


